
Support for the definition and usage of process patterns
Mariele Hagen (hagen@adesso.de)

adesso AG, Stockholmer Allee 24, 44269 Dortmund, Germany

Introduction

Since the 1980s software patterns have gained rising interest within the software community. While in
the last 20 years the focus has been on mining and describing single patterns, recent focus has shifted
to describing more complex structures like pattern catalogues [GHJ96], systems [BMR96], languages
[AIS77] or handbooks [RZ96]. The variety of pattern types has increased, too, as there are design
patterns, process patterns, organizational patterns, pedagogical patterns and so on. Despite this
increasing attention patterns of all types bear shortcomings with respect to their description. We will
explain these deficiencies with respect to process patterns, but these deficiencies are valid for any
pattern type.

Ambiguity because of lacking precision

Patterns – also called a “literary form” [Cop96] - are mostly described in an informal way by natural
language. This can be considered as an advantage, since understanding a pattern does not require the
knowledge about notation semantics or a certain syntax. However, there is a limitation to precision in
natural language. Eden examined the semantic ambiguity of Gamma’s design patterns and revealed
vast deficiencies concerning precision [Ede97]. This informal description of a pattern allows for an
ambiguous interpretation and execution of a pattern’s process. It is also not known, how a pattern can be
composed of other patterns, under which conditions a pattern is a variant of another pattern and in which
cases patterns can be executed sequentially. Consequently, in many cases maybe not the most
adequate pattern is chosen.

Ambiguity because of non-standard description of pattern interfaces and pattern relationships

It is widely accepted that patterns should not be considered as isolated solutions, but be a part of a more
complex structure (like pattern languages, catalogues, handbooks or systems) to “achieve their fullest
power” [Cop96]. This requirement is important especially for process patterns. It is necessary to know,
which patterns might work together or even depend on each other to build up a software process. We
need to know the entry and exit conditions (i.e. the interfaces) of a process pattern to glue it together
with other process patterns. Present process pattern descriptions contain textual context definitions, but
they are not accurately standardized described.

In addition to a more accurate context definition, pattern relationships have to be defined more precisely.
Although several publications bother with pattern relationships, they provide mostly a textual, nonformal
and unprecise description like “A variant pattern refines a more well-known pattern” [Nob98].
Relationships defined without precise criteria are questionable as they do not give reliable implications
for their usage.

Lacking process pattern management and tool support

Existing literature on patterns does not focus the problem of process pattern management (i.e. pattern
writing, problem specification, pattern search, pattern selection and pattern application) in detail (cf.
[Czi01] for the microprocess of patterns). But we think that for an effective and productive use of process
patterns the process pattern management must get more into focus. First, pattern authors or miners
have to be equipped with a standard notation to specify patterns in a unambiguous, precise way. This
notation must allow to specify relationships as composition, variance and sequence and to specify
interfaces. Users of a pattern structure (pattern language or the like) should be supported in providing
mechanisms for pattern search. Secondly, patterns could be retrieved and used more effectively and in a
more adequate way if an information system like a pattern workbench would present not only a pattern
candidate but also possible variant patterns, successors and component patterns which compose the

Position Paper � Focus Group “What makes PatternLanguages work well?” � EuroPlop 2002 � Page 1 of 2

mailto:hagen@adesso.de

candidate pattern. There should also be the possibility to log the application of process patterns to
understand a project’s history.

Key Ideas

To overcome the mentioned deficiencies, a more precise specification of patterns is needed. With
respect to this objective, we defined a process pattern description language (PPDL) based on the UML
[Dit02]. We added several new concepts referring to the UML`s syntax and semantics to provide
mechanisms to specify the structure of a process pattern, the interfaces (i.e. contexts) and relationships
between patterns. To specify the structure of process patterns, we first had to define an adapted pattern
form which contains all elements to model a process. For example, we renamed the pattern elements
Applicapability with Initial Context and Consequences with Resulting Context and added a new pattern
element named roles (cf. [GHJ96] for an overlook of the GOF pattern elements). Secondly, we defined
the process pattern relationships Sequence, Usage, Refinement, ProcessVariance, ProcessAlternatives
and ProblemVariance. In addition, we defined a notation to present these new language concepts. We
extended the UML meta-model with several meta-classes and added several OCL-Constraints to
obtained a syntactically and semantically enriched UML derivate, the process pattern description
language. Currently, we are working on a process pattern workbench that implements the process
pattern description language and that provides all the necessary mechanisms to support the definition,
modification, retrieval and application of process patterns.

Conclusion

We have shown that current (process) pattern descriptions are unprecise and therefore ambiguous. This
ambiguity prevents an effective and productive use of process patterns and process pattern languages
(or systems, handbooks and catalogues respectively). So, our aim is to improve understanding and use
of process patterns and process pattern languages by defining a process pattern description language
which possesses the required precision and unambiguity. By developing the process pattern workbench
we want to implement the introduced concepts and to support the everyday work of authors and readers
of process patterns.

References

[AIS77] Alexander, C.; Ishikawa, S.; Silverstein, M.: A Pattern Language. New York: Oxford
University Press, 1977.

[BMR96] Buschmann, F.; Meunier, R., Rohnert, H. et. al.: Pattern-Oriented Software Architecture -
A System of Patterns. Wiley & Sons Ltd., 1996.

[Cop96] Coplien, J.: Software Patterns. SIGS Book & Multimedia, 1996.
[Czi01] Czichy, T.: Pattern-based Software Development: An Empirical Study - Summary of Results,

University of Technology, Dresden, Department of Systems Engineering, 2001.
[Dit02] Dittmann, T.: PPDL – Eine Beschreibungssprache für Process Patterns, 2002, Universität

Dortmund
[Ede97] Eden, A.: Giving The Quality a Name: Precise Specification of Design Patterns: A Second

Look at the Manuscripts. In: Journal of Object Oriented Programming, SIGS Publications,
http://www.math.tau.ac.il/~eden/bibliography.html#giving_the_quality_a_name, May 1997.

[GHJ96] Gamma, E.; Helm, R.; Johnson, R. et. al.: Entwurfsmuster - Elemente wiederverwendbarer
objektorientierter Software, Addison-Wesley, 1996.

[Nob98] Noble, J.: Classifying Relationships Between Object-Oriented Patterns, Microsoft Research
Institute, 1998

[RZ96] Riehle, D.; Züllighoven, H.: Understanding and Using Patterns in Software Development,
Theory and Practice of Object Systems, Vol. 2(1), pp. 3-13.

Position Paper � Focus Group “What makes PatternLanguages work well?” � EuroPlop 2002 � Page 2 of 2

http://www.math.tau.ac.il/~eden/bibliography.html

